
Using SGI's dplace Tool for Pinning
Category: Process Pinning

Summary: The dplace tool binds processes/threads to specific processor cores to
improve your code performance. For an introduction to pinning at NAS, see Process/Thread
Pinning Overview.

The SGI dplace tool binds processes/threads to specific processor cores. Once pinned,
the processes/threads do not migrate. This can improve the performance of your code by
increasing the percentage of local memory accesses.

dplace invokes a kernel module to create a job placement container consisting of all (or a
subset of) the CPUs of the cpuset. In the current dplace version 2, an LD_PRELOAD
library (libdplace.so) is used to intercept calls to the functions fork(), exec(), and
pthread_create() to place tasks that are being created. Note that tasks created internal
to glib are not intercepted by the preload library. These tasks will not be placed. If no
placement file is being used, then the dplace process is placed in the job placement
container and (by default) is bound to the first CPU of the cpuset associated with the
container.

Syntax

dplace [-e] [-c cpu_numbers] [-s skip_count] [-n process_name] \
 [-x skip_mask] [-r [l|b|t]] [-o log_file] [-v 1|2] \
 command [command-args]
dplace [-p placement_file] [-o log_file] command [mpiexec -np4 a.out]
dplace [-q] [-qq] [-qqq]

As illustrated above, dplace "execs" command (in this case, without its mpiexec
arguments), which executes within this placement container and continues to be bound to
the first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If a placement file is being used, then the dplace process is not placed at the time the job
placement container is created. Instead, placement occurs as processes are forked and
executed.

Options for dplace

Using SGI's dplace Tool for Pinning 1

http://www.nas.nasa.gov/hecc/support/kb/ProcessThread-Pinning-Overview_259.html
http://www.nas.nasa.gov/hecc/support/kb/ProcessThread-Pinning-Overview_259.html

Explanations for some of the options are provided below. For additional information, see
man dplace on either Pleiades or Columbia.

-e and -c cpu_numbers

-e determines exact placement. As processes are created, they are bound to CPUs in the
exact order specified in the CPU list. CPU numbers may appear multiple times in the list.

A CPU value of "x" indicates that binding should not be done for that process. If the end of
the list is reached, binding starts over again at the beginning of the list.

-c cpu_numbers specifies a list of CPUs, optionally strided CPU ranges, or a striding
pattern. For example:

-c 1•
-c 2-4 (equivalent to -c 2,3,4)•
-c 12-8 (equivalent to -c 12,11,10,9,8)•
-c 1,4-8,3•
-c 2-8:3 (equivalent to -c 2,5,8)•
-c CS•
-c BT•

NOTE: CPU numbers are not physical CPU numbers. They are logical CPU numbers that
are relative to the CPUs that are in the allowed set, as specified by the current cpuset.

A CPU value of "x" (or *), in the argument list for the -c option, indicates that binding
should not be done for that process. The value "x" should be used only if the -e option is
also used.

Note that CPU numbers start at 0.

For striding patterns, any subset of the characters (B)lade, (S)ocket, (C)ore, (T)hread may
be used; their ordering specifies the nesting of the iteration. For example, SC means to
iterate all the cores in a socket before moving to the next CPU socket, while CB means to
pin to the first core of each blade, then the second core of every blade, and so on.

For best results, use the -e option when using stride patterns. If the -c option is not
specified, all CPUs of the current cpuset are available. The command itself (which is
"execed" by dplace) is the first process to be placed by the -c cpu_numbers.

Without the -e option, the order of numbers for the -c option is not important.

-x skip_mask

Category: Process Pinning 2

Provides the ability to skip placement of processes. The skip_mask argument is a
bitmask. If bit N of skip_mask is set, then the N+1th process that is forked is not placed.
For example, setting the mask to 6 prevents the second and third processes from being
placed. The first process (the process named by the command) will be assigned to the first
CPU. The second and third processes are not placed. The fourth process is assigned to the
second CPU, and so on. This option is useful for certain classes of threaded applications
that spawn a few helper processes that typically do not use much CPU time.

-s skip_count

Skips the first skip_count processes before starting to place processes onto CPUs. This
option is useful if the first skip_count processes are "shepherd" processes used only for
launching the application. If skip_count is not specified, a default value of 0 is used.

-q

Lists the global count of the number of active processes that have been placed (by
dplace) on each CPU in the current cpuset. Note that CPU numbers are logical CPU
numbers within the cpuset, not physical CPU numbers. If specified twice, lists the current
dplace jobs that are running. If specified three times, lists the current dplace jobs and the
tasks that are in each job.

-o log_file

Writes a trace file to log_file that describes the placement actions that were made for
each fork, exec, etc. Each line contains a time-stamp, process id:thread number, CPU that
task was executing on, taskname and placement action. Works with version 2 only.

Examples of dplace Usage

For OpenMP Codes

#PBS -lselect=1:ncpus=8

#With Intel compiler versions 10.1.015 and later,
#you need to set KMP_AFFINITY to disabled
#to avoid the interference between dplace and
#Intel's thread affinity interface.

setenv KMP_AFFINITY disabled

#The -x2 option provides a skip map of 010 (binary 2) to
#specify that the 2nd thread should not be bound. This is
#because under the new kernels (including the ones used on

Category: Process Pinning 3

#Pleiades and Columbia), the master thread (first thread)
#will fork off one monitor thread (2nd thread) which does
#not need to be pinned.

#On Pleiades, if the number of threads is less than
#the number of cores, choose how you want
#to place the threads carefully. For example,
#the following placement is good on Harpertown
#but not good on other Pleiades processor types:

dplace -x2 -c 2,1,4,5 ./a.out

To check the thread placement, you can add the -o option to create a log:

dplace -x2 -c 2,1,4,5 -o log_file ./a.out
Or use the following command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out

Sample Output of log_file

timestamp process:thread cpu taskname| placement action
15:32:42.196786 31044 1 dplace | exec ./openmp1, ncpu 1
15:32:42.210628 31044:0 1 a.out | load, cpu 1
15:32:42.211785 31044:0 1 a.out | pthread_create thread_number 1, ncpu -1
15:32:42.211850 31044:1 - a.out | new_thread
15:32:42.212223 31044:0 1 a.out | pthread_create thread_number 2, ncpu 2
15:32:42.212298 31044:2 2 a.out | new_thread
15:32:42.212630 31044:0 1 a.out | pthread_create thread_number 3, ncpu 4
15:32:42.212717 31044:3 4 a.out | new_thread
15:32:42.213082 31044:0 1 a.out | pthread_create thread_number 4, ncpu 5
15:32:42.213167 31044:4 5 a.out | new_thread
15:32:54.709509 31044:0 1 a.out | exit

Sample Output of placement.out

PSR COMMAND TIME PID PPID LWP
 1 a.out 00:00:02 31044 31039 31044
 0 a.out 00:00:00 31044 31039 31046
 2 a.out 00:00:02 31044 31039 31047
 4 a.out 00:00:01 31044 31039 31048
 5 a.out 00:00:01 31044 31039 31049

Note that Intel OpenMP jobs use an extra thread that is unknown to the user and it does not
need to be placed. In the above example, this extra thread (31046) is running on core
number 0.

For MPI Codes Built with SGI's MPT Library

Category: Process Pinning 4

With SGI's MPT, only 1 shepherd process is created for the entire pool of MPI processes,
and the proper way of pinning using dplace is to skip the shepherd process.

Here is an example for Columbia:

#PBS -l ncpus=8
....
 mpirun -np 8 dplace -s1 -c 0-7 ./a.out
or
 mpiexec -np 8 dplace -s1 -c 0-7 ./a.out

On Pleiades, if the number of processes in each node is less than the number of cores in
that node, choose how you want to place the processes carefully. For example, the
following placement works well on Harpertown nodes, but not on other Pleiades processor
types:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

To check the placement, you can set MPI_DSM_VERBOSE, which prints the placement in
the PBS stderr file:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
setenv MPI_DSM_VERBOSE
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

Output in PBS stderr File

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r75i2n13 1
 1 1 yes r75i2n13 2
 2 2 yes r75i2n13 4
 3 3 yes r75i2n13 5
 4 0 yes r87i2n6 1
 5 1 yes r87i2n6 2
 6 2 yes r87i2n6 4
 7 3 yes r87i2n6 5

If you use the -o log_file flag of dplace, the CPUs where the processes/threads are
placed will be printed, but the node names are not printed.

#PBS -l select=2:ncpus=8:mpiprocs=4
....
mpiexec -np 8 dplace -s1 -c 2,4,1,5 -o log_file ./a.out

Category: Process Pinning 5

Output in log_file

timestamp process:thread cpu taskname | placement action
15:16:35.848646 19807 - dplace | exec ./new_pi_mpt126, ncpu -1
15:16:35.877584 19807:0 - a.out | load, cpu -1
15:16:35.878256 19807:0 - a.out | fork -> pid 19810, ncpu 1
15:16:35.879496 19807:0 - a.out | fork -> pid 19811, ncpu 2
15:16:35.880053 22665:0 - a.out | fork -> pid 22672, ncpu 2
15:16:35.880628 19807:0 - a.out | fork -> pid 19812, ncpu 4
15:16:35.881283 22665:0 - a.out | fork -> pid 22673, ncpu 4
15:16:35.882536 22665:0 - a.out | fork -> pid 22674, ncpu 5
15:16:35.881960 19807:0 - a.out | fork -> pid 19813, ncpu 5
15:16:57.258113 19810:0 1 a.out | exit
15:16:57.258116 19813:0 5 a.out | exit
15:16:57.258215 19811:0 2 a.out | exit
15:16:57.258272 19812:0 4 a.out | exit
15:16:57.260458 22672:0 2 a.out | exit
15:16:57.260601 22673:0 4 a.out | exit
15:16:57.260680 22674:0 5 a.out | exit
15:16:57.260675 22671:0 1 a.out | exit

For MPI Codes Built with MVAPICH2 Library

With MVAPICH2, 1 shepherd process is created for each MPI process. You can use ps -L
-u your_userid on the running node to see these processes. To properly pin MPI
processes using dplace, you cannot skip the shepherd processes and must use the
following:

mpiexec -np 4 dplace -c2,4,1,5 ./a.out

Article ID: 284
Last updated: 23 Aug, 2012
Computing at NAS -> Best Practices -> Process Pinning -> Using SGI's dplace Tool for
Pinning
http://www.nas.nasa.gov/hecc/support/kb/entry/284/?ajax=1

Category: Process Pinning 6

http://www.nas.nasa.gov/hecc/support/kb/entry/284/?ajax=1

	284.html

